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 Aim: optimize the combination of radiotherapy (RT) with 

immunotherapy (IO)

 Amount benefit IO adds depends on RT dose spacing

BACKGROUND

 Train in  simulated environment based on biologically-motivated dynamical 

systems model which can reproduce the synergistic effects between RT and IO  
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Novelty:

• Mathematical formulation of the optimal spacing problem as a tractable Markov 

Decision Process 

• Reinforcement Learning algorithm with novel specifications which can obtain 

response-adapted optimal treatment policies in a simulated environment

• Computational framework which contributes to the body of literature paving the 

way for AI-driven tumor xenograft experiments
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Optimizing the Combination of Radiotherapy with Immunotherapy 
via Deep Reinforcement Learning

 Reinforcement Learning is an approach to this problem which 

requires formulation of the problem as a Markov Decision 

Process (MDP):  collection of potential states, actions, and a 

reward function.

Q-learning shows promise as a tool for learning 

response-adaptive personalized fractionation plans. 

METHOD

Fig.1: Immunotherapy has a greater effect on mice with normal immune systems when two fractions of 

radiotherapy are applied 10 days apart (blue) than when they are applied on consecutive days (red). 

Fig.2: Illustration of the Reinforcement Learning paradigm

CONCLUSIONS

Apply the 

next dose in 

14 days!

Goal: Given a fixed number of radiation pulses, find the 

optimal adaptive spacing for administration for the individual 

subject.
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Fig.5: Using the agent results in lower eventual tumor volumes than using 

fixed or random spacing. LTV = log (final day) tumor volume, and d is the 

effect size.

Agent chooses an action 

𝐴𝑡 corresponding to the 

number of days before 

the next radiation pulse

Agent approximates 𝑄(𝑠𝑡, 𝑎𝑡) via Neural Network:

Q(𝒔𝒕, 𝒂𝒕)

Fig.3: Reinforcement Learning framework for radiation policy determination

IO

 Best RT spacing depends on the individual’s immune system 

and may change with time for a single individual

𝑄(𝑠𝑡, 𝑎𝑡) predicts the 

reward for each state-

action pair. At each state, 

the optimal policy can be 

found by taking the action 

corresponding to the 

highest predicted reward 

(output of 𝑄) for that 

state.

 Simulate real data by applying noise to the parameters of 

the dynamical systems model that governs the 

environment.

Environment

Fig.4: Error bars on simulated  vs real data are of comparable length.
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